Bayesian Semiparametric Regression Analysis of Multicategorical Time-space Data

نویسندگان

  • Ludwig Fahrmeir
  • Stefan Lang
چکیده

SUMMARY We present a uniied semiparametric Bayesian approach based on Markov random eld priors for analyzing the dependence of multicategorical response variables on time, space and further covariates. The general model extends dynamic, or state space, models for categorical time series and longitudinal data by including spatial eeects as well as nonlinear eeects of metrical covariates in exible semiparametric form. Trend and seasonal components, diierent types of covariates and spatial eeects are all treated within the same general framework by assigning appropriate priors with diierent forms and degrees of smoothness. Inference is fully Bayesian and uses MCMC techniques for posterior analysis. We provide two approaches: The rst one is based on direct evaluation of observation likelihoods. The second one is based on latent semiparametric utility models and is particularly useful for probit models. The methods are illustrated by applications to unemployment data and a forest damage survey.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BayesX: Analysing Bayesian structured additive regression models

SUMMARY There has been much recent interest in Bayesian inference for generalized additive and related models. The increasing popularity of Bayesian methods for these and other model classes is mainly caused by the introduction of Markov chain Monte Carlo (MCMC) simulation techniques which allow the estimation of very complex and realistic models. This paper describes the capabilities of the pu...

متن کامل

University of Innsbruck Working Papers in Economics and Statistics Simultaneous probability statements for Bayesian P - splines Andreas

P-splines are a popular approach for fitting nonlinear effects of continuous covariates in semiparametric regression models. Recently, a Bayesian version for P-splines has been developed on the basis of Markov chain Monte Carlo simulation techniques for inference. In this work we adopt and generalize the concept of Bayesian contour probabilities to additive models with Gaussian or multicategori...

متن کامل

Generalized structured additive regression based on Bayesian P-splines

Generalized additive models (GAM) for modelling nonlinear effects of continuous covariates are now well established tools for the applied statistician. In this paper we develop Bayesian GAM’s and extensions to generalized structured additive regression based on one or two dimensional P-splines as the main building block. The approach extends previous work by Lang and Brezger (2003) for Gaussian...

متن کامل

Simultaneous probability statements for Bayesian

P-splines are a popular approach for fitting nonlinear effects of continuous covariates in semiparametric regression models. Recently, a Bayesian version for P-splines has been developed on the basis of Markov chain Monte Carlo simulation techniques for inference. In this work we adopt and generalize the concept of Bayesian contour probabilities to additive models with Gaussian or multicategori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000